Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int Immunopharmacol ; 130: 111738, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38428149

RESUMO

BACKGROUND: Neuroinflammation, a critical component of the secondary injury cascade post-spinal cord injury, involves the activation of pro-inflammatory cells and release of inflammatory mediators. Resolution of neuroinflammation is closely linked to cellular autophagy. This study investigates the potential of Fisetin, a natural anti-inflammatory compound, to ameliorate neuroinflammation and confer spinal cord injury protection through the regulation of autophagy in pro-inflammatory cells. METHODS: Utilizing a rat T10 spinal cord injury model with distinct treatment groups (Sham, Fisetin-treated, and Fisetin combined with autophagy inhibitor), alongside in vitro models involving lipopolysaccharide (LPS)-stimulated microglial cell activation and co-culture with neurons, we employed techniques such as transcriptomic sequencing, histological assessments (immunofluorescence staining, etc.), molecular analyses (PCR, WB, ELISA, etc.), and behavioral evaluations to discern differences in neuroinflammation, autophagy, neuronal apoptosis, and neurological function recovery. RESULTS: Fisetin significantly augmented autophagic activity in injured spinal cord tissue, crucially contributing to neurological function recovery in spinal cord-injured rats. Fisetin's autophagy-dependent effects were associated with a reduction in neuronal apoptosis at the injury site. The treatment reduced the population of CD68+ and iNOS+ cells, coupled with decreased pro-inflammatory cytokines IL-6 and TNF-α levels, through autophagy-dependent pathways. Fisetin pre-treatment attenuated LPS-induced pro-inflammatory polarization of microglial cells, with this protective effect partially blocked by autophagy inhibition. Fisetin-induced autophagy in the injured spinal cord and pro-inflammatory microglial cells was associated with significant activation of AMPK and inhibition of mTOR. CONCLUSION: Fisetin orchestrates enhanced autophagy in pro-inflammatory microglial cells through the AMPK-mTOR signaling pathway, thereby mitigating neuroinflammation and reducing the apoptotic effects of neuroinflammation on neurons. This mechanistic insight significantly contributes to the protection and recovery of neurological function following spinal cord injury, underscoring the vital nature of Fisetin as a potential therapeutic agent.


Assuntos
Flavonóis , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Ratos , Animais , Lipopolissacarídeos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Inflamação/metabolismo , Traumatismos da Medula Espinal/complicações , Serina-Treonina Quinases TOR/metabolismo , Medula Espinal/patologia , Microglia , Autofagia
2.
Heliyon ; 10(1): e23671, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187300

RESUMO

Background and aims: Fatty acid oxidation disorders (FAODs) are a group of autosomal recessive metabolic diseases included in many newborn screening (NBS) programs, but the incidence and disease spectrum vary widely between ethnic groups. We aimed to elucidate the incidence, disease spectrum, and genetic features of FAODs in a southern Chinese population. Materials and methods: The FAODs screening results of 643,606 newborns from 2014 to 2022 were analyzed. Results: Ninety-two patients were eventually diagnosed with FAODs, of which 61 were PCD, 20 were MADD, 5 were SCADD, 4 were VLCADD, and 2 were CPT-IAD. The overall incidence of FAODs was 1:6996 (95 % CI: 1:5814-1:8772) newborns. All PCD patients had low C0 levels during NBS, while nine patients (14.8 %) had normal C0 levels during the recall review. All but one MADD patients had elevated C8, C10, and C12 levels during NBS, while eight patients (40 %) had normal acylcarnitine levels during the recall review. The most frequent SLC22A5 variant was c.760C > T (p.R254*) with an allele frequency of 29.51 %, followed by c.51C > G (p.F17L) (17.21 %) and c.1400C > G (p.S467C) (16.39 %). The most frequent ETFDH variant was c.250G > A (p.A84T) with an allelic frequency of 47.5 %, followed by c.524G > A (R175H) (12.5 %), c.998A > G (p.Y333C) (12.5 %), and c.1657T > C (p.Y553H) (7.5 %). Conclusion: The prevalence, disease spectrum, and genetic characteristics of FAODs in a southern Chinese population were clarified. PCD was the most common FAOD, followed by MADD. Hotspot variants were found in SLC22A5 and ETFDH genes, while the remaining FAODs showed great molecular heterogeneity. Incorporating second-tier genetic screening is critical for FAODs.

3.
Clin Chim Acta ; 552: 117617, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890575

RESUMO

BACKGROUND: Neonatal intrahepatic cholestasis due to citrin deficiency (NICCD) is an autosomal recessive disorder caused by SLC25A13 genetic mutations. We retrospectively analyzed 26 Chinese infants with NICCD (years 2014-2022) in Quanzhou City. METHODS: The plasma citrulline (CIT) concentration analyzed by tandem mass spectrometry (MS/MS), biochemical parameters and molecular analysis results are presented. RESULTS: Twelve genotypes were discovered. The relationship between the CIT concentration and genotype is uncertain. In total, 8 mutations were detected, with 4 variations, c.851_854delGTAT, c.615 + 5G > A, c.1638_1660dup and IVS16ins3kb, constituting the high-frequency mutations. Specifically, we demonstrated 2 patients with NICCD combined with another inborn errors of metabolism (IEM). Patient No. 22 possessed compound heterozygous mutations of c.615 + 5G > A and c.790G > A in the SLC25A13 gene accompanied by compound heterozygous variations of c.C259T and c.A155G in the PTS gene. Additionally, Patient No. 26 carried c.51C > G and c.760C > T in the SLC22A5 gene as well as c.615 + 5G > A and IVS16ins3kb in the SLC25A13 gene. CONCLUSIONS: We report a case of the simultaneous occurrence of primary carnitine deficiency (PCD) and NICCD.


Assuntos
Colestase Intra-Hepática , Colestase , Citrulinemia , Doenças do Recém-Nascido , Transportadores de Ânions Orgânicos , Humanos , Lactente , Recém-Nascido , Proteínas de Ligação ao Cálcio/genética , China , Colestase Intra-Hepática/genética , Citrulinemia/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação , Transportadores de Ânions Orgânicos/genética , Estudos Retrospectivos , Membro 5 da Família 22 de Carreadores de Soluto/genética , Espectrometria de Massas em Tandem
4.
J Pediatr Endocrinol Metab ; 37(2): 163-169, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38158618

RESUMO

OBJECTIVES: Newborn screening (NBS) for primary carnitine deficiency (PCD) exhibits suboptimal performance. This study proposes a strategy to enhance the efficacy of second-tier genetic screening by adjusting the cutoff value for free carnitine (C0). METHODS: Between January 2021 and December 2022, we screened 119,898 neonates for inborn metabolic disorders. Neonates with C0 levels below 12 µmol/L were randomly selected for second-tier genetic screening, employing a novel matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assay. RESULTS: In total, 2,515 neonates with C0 <12 µmol/L underwent further screening, including 206 neonates with C0 <8.5 µmol/L and 320 neonates with 8.5G, accounting for 25 % (7/28) of allelic frequencies. CONCLUSIONS: A novel MALDI-TOF MS assay targeting 21 SLC22A5 variants in a Chinese population was successfully established. This assay exhibits a high detection and diagnostic rate, making it suitable for population-based genetic screening. Combined genetic screening is recommended to enhance the efficiency of PCD-NBS.


Assuntos
Cardiomiopatias , Carnitina/deficiência , Testes Genéticos , Hiperamonemia , Doenças Musculares , Triagem Neonatal , Recém-Nascido , Humanos , Triagem Neonatal/métodos , Membro 5 da Família 22 de Carreadores de Soluto/genética , Mutação , Espectrometria de Massas em Tandem
5.
Int J Biol Sci ; 19(15): 4865-4882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781508

RESUMO

Background: The JAK/STAT signaling pathway is the main inflammatory signal transduction pathway, whether JAK/STAT contributes the pathology of SCI and targeting the pathway will alleviate SCI needs to be addressed. Here, we explored the therapeutic effect of pan-JAK inhibitor tofacitinib (TOF) on secondary injury after SCI and explained the underlying mechanisms. Methods: SCI model in rat was established to evaluate the therapeutic effects of TOF treatment in vivo. Histological and behavioral analyses were performed at different time points after SCI. In vitro, the effects of TOF on pro-inflammatory activation of primary microglia and BV2 cells were analyzed by western blot analysis, fluorescent staining, qPCR and flow cytometry. The neuroprotection of TOF was detected using a co-culture system with primary neurons and microglia. Results: TOF can effectively improve motor dysfunction caused by spinal cord injury in rats. TOF administration in the early stage of inflammation can effectively inhibit neuronal apoptosis and scar tissue formation, and promote the repair of axons and nerve fibers. Further studies have demonstrated that TOF suppresses inflammation caused by spinal cord injury by inhibiting the activation of microglia to pro-inflammatory phenotype in vivo and in vitro. Additionally, an interesting phenomenon is revealed in our results that TOF exhibits superior neuronal protection during inflammation in vitro. Conclusions: Our study showed that TOF could regulate microglial activation via JAK / STAT pathway and promote the recovery of motor function after SCI, which is of great significance for the immunotherapy of SCI.


Assuntos
Microglia , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Inflamação/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo
6.
Am J Cancer Res ; 13(8): 3342-3367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693148

RESUMO

Emerging research indicates that circRNAs serve a crucial role in occurrence and development of cancers. This study aimed to uncover the biological role of hsa_circ_0000519 in the progression of LUAD (lung adenocarcinoma). hsa_circ_0000519 was identified by bioinformatic analysis, and its differential expression was validated in LUAD tissues and cell lines. CCK8, colony formation, wound healing, transwell assays, and xenograft tumor models were used to observe the biological functions of hsa_circ_0000519. FISH, RIP, dual luciferase reporter assays, and recovery experiments were implemented to explore the underlying mechanisms of hsa_circ_0000519. hsa_circ_0000519 was significantly upregulated in LUAD tissues and cell lines. The expression of hsa_circ_0000519 was positively correlated with T grade and TNM stage in patients with LUAD. Downregulation of hsa_circ_0000519 remarkably reduced cell proliferation, migration, invasion in vitro, and tumor growth in vivo. Mechanistic investigation demonstrated that hsa_circ_0000519 directly sponged hsa-miR-1296-5p to reduce its repressive impact on DARS as well as activate the PI3K/AKT/mTOR signaling pathway. The malignant phenotypes of LUAD cells induced by upregulation of hsa_circ_0000519 could be rescued by hsa-miR-1296-5p overexpression or knockdown of DARS. In conclusion, hsa_circ_0000519 promotes LUAD progression through the hsa-miR-1296-5p/DARS axis and may be expected as a novel biomarker and therapeutic for LUAD.

7.
Adv Sci (Weinh) ; 10(25): e2300971, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424170

RESUMO

Accumulation of vimentin is the core event in epithelial-mesenchymal transition (EMT). Post-translational modifications have been widely reported to play crucial roles in imparting different properties and functions to vimentin. Here, a novel modification of vimentin, acetylated at Lys104 (vimentin-K104Ac) is identified, which is stable in lung adenocarcinoma (LUAD) cells. Mechanistically, NACHT, LRR, and PYD domain-containing protein 11 (NLRP11), a regulator of the inflammatory response, bind to vimentin and promote vimentin-K104Ac expression, which is highly expressed in the early stages of LUAD and frequently appears in vimentin-positive LUAD tissues. In addition, it is observed that an acetyltransferase, lysine acetyltransferase 7 (KAT7), which binds to NLRP11 and vimentin, directly mediates the acetylation of vimentin at Lys104 and that the cytoplasmic localization of KAT7 can be induced by NLRP11. Malignant promotion mediated by transfection with vimentin-K104Q is noticeably greater than that mediated by transfection with vimentin-WT. Further, suppressing the effects of NLRP11 and KAT7 on vimentin noticeably inhibited the malignant behavior of vimentin-positive LUAD in vivo and in vitro. In summary, these findings have established a relationship between inflammation and EMT, which is reflected via KAT7-mediated acetylation of vimentin at Lys104 dependent on NLRP11.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Histonas/metabolismo , Vimentina/metabolismo , Lisina/metabolismo , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Histona Acetiltransferases
8.
J Cancer ; 14(8): 1309-1320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283797

RESUMO

An imbalance in ROS (reactive oxidative species) and the antioxidant barrier regulates the process of tumorigenesis. GSH has a key effect in preventing cells from oxidative damage by scavenging ROS. The role of CHAC2, an enzyme regulating GSH, in lung adenocarcinoma remains unknown. Here, RNA sequencing data analysis and immunohistochemistry (IHC) assays of lung adenocarcinoma and normal lung tissues were used to verify the expression of CHAC2. The effect of CHAC2 on the proliferation abilities of lung adenocarcinoma cells was examined using a series of overexpression or knockout assays. RNA sequencing and IHC results showed that the expression level of CHAC2 in lung adenocarcinoma was higher than that in normal lung tissues. CCK-8, colony formation and subcutaneous xenograft experiments in BALB/c nude mice showed that in vitro and in vivo CHAC2 promoted the growth capacity of lung adenocarcinoma cells. Subsequent immunoblot, immunohistochemistry and flow cytometry experiments showed that CHAC2 increased ROS by reducing GSH in lung adenocarcinoma and that the elevated ROS activated the MAPK pathway. Our investigation identified a new role for CHAC2 and elucidated the mechanism by which CHAC2 promotes lung adenocarcinoma progression.

9.
iScience ; 26(7): 107013, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37389184

RESUMO

Exploring early detection methods through comprehensive evaluation of DNA methylation for lung squamous cell carcinoma (LUSC) patients is of great significance. By using different machine learning algorithms for feature selection and model construction based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, five methylation biomarkers in LUSC (along with mapped genes) were identified including cg14823851 (TBX4), cg02772121 (TRIM15), cg10424681 (C6orf201), cg12910906 (ARHGEF4), and cg20181079 (OR4D11), achieving extremely high sensitivity and specificity in distinguishing LUSC from normal samples in independent cohorts. Pyrosequencing assay verified DNA methylation levels, meanwhile qRT-PCR and immunohistochemistry results presented their accordant methylation-related gene expression statuses in paired LUSC and normal lung tissues. The five methylation-based biomarkers proposed in this study have great potential for the diagnosis of LUSC and could guide studies in methylation-regulated tumor development and progression.

10.
PeerJ ; 10: e14180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570007

RESUMO

According to mounting evidence, long noncoding RNAs (lncRNAs) play a vital role in regulated cell death (RCD). A potential strategy for cancer therapy involves triggering ferroptosis, a novel form of RCD. Although it is thought to be an autophagy-dependent process, it is still unclear how the two processes interact. This study characterized a long intergenic noncoding RNA, LINC00551, expressed at a low level in lung adenocarcinoma (LUAD) and some other cancers. Overexpression of LINC00551 suppresses cell viability while promoting autophagy and RSL-3-induced ferroptosis in LUAD cells. LINC00551 acts as a competing endogenous RNA (ceRNA) and binds with miR-4328 which up-regulates the target DNA damage-inducible transcript 4 (DDIT4). DDIT4 inhibits the activity of mTOR, promotes LUAD autophagy, and then promotes the ferroptosis of LUAD cells in an autophagy-dependent manner. This study provided an insight into the molecular mechanism regulating ferroptosis and highlighted LINC00551 as a potential therapeutic target for LUAD.


Assuntos
Adenocarcinoma , Ferroptose , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Ferroptose/genética , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células/genética , Autofagia/genética , Adenocarcinoma/genética , Pulmão/metabolismo , Fatores de Transcrição
11.
Clin Chim Acta ; 537: 181-187, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334790

RESUMO

BACKGROUND: Newborn screening (NBS) for multiple acyl-CoA dehydrogenase deficiency (MADD) has poor sensitivity. This study aimed to evaluate the feasibility of incorporating second-tier genetic screening for MADD. METHODS: A total of 453,390 newborns were screened for inherited metabolic disorders using tandem mass spectrometry from January 2017 to May 2022. A matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assay was developed to identify 23 common ETFDH variants and used for second-tier screening of MADD. RESULTS: Overall, 185 newborns with suspected MADD received second-tier genetic screening. Thirty-three (17.8 %) newborns with positive results, of which 7 were homozygotes, 5 were compound heterozygotes, 21 were heterozygotes. Further genetic analysis revealed that 6 of the 21 newborns had a second ETFDH variant. Therefore, 18 patients were finally diagnosed with MADD, with a positive predictive value of 9.73 %. The detection rate and diagnostic rate of MALDI-TOF MS assay were 83.33 % and 66.67 %, respectively. Thus the incidence of MADD in our population was estimated at 1:25,188. Nine different ETFDH variants were identified in MADD patients. The most common ETFDH variant being c.250G > A with an allelic frequency of 47.22 %, followed by c.524G > A (13.89 %) and c.998A > G (13.89 %). All patients had elevation of multiple acylcarnitines at NBS. However, seven patients had normal acylcarnitine levels and two patients showed mild elevation of only two acylcarnitines during the recall review. CONCLUSION: We have established a high throughput MALDI-TOF MS assay for MADD screening. Half of the MADD patients would not be detected under conventional screening protocols. Incorporating second-tier genetic screening into the current NBS could improve the performance of MADD NBS.


Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Recém-Nascido , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Riboflavina/metabolismo , Testes Genéticos , Triagem Neonatal , Mutação
12.
Front Immunol ; 13: 872387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693786

RESUMO

Screening for early-stage lung cancer with low-dose computed tomography is recommended for high-risk populations; consequently, the incidence of pure ground-glass opacity (pGGO) is increasing. Ground-glass opacity (GGO) is considered the appearance of early lung cancer, and there remains an unmet clinical need to understand the pathology of small GGO (<1 cm in diameter). The objective of this study was to use the transcriptome profiling of pGGO specimens <1 cm in diameter to construct a pGGO-related gene risk signature to predict the prognosis of early-stage lung adenocarcinoma (LUAD) and explore the immune microenvironment of GGO. pGGO-related differentially expressed genes (DEGs) were screened to identify prognostic marker genes with two machine learning algorithms. A 15-gene risk signature was constructed from the DEGs that were shared between the algorithms. Risk scores were calculated using the regression coefficients for the pGGO-related DEGs. Patients with Stage I/II LUAD or Stage IA LUAD and high-risk scores had a worse prognosis than patients with low-risk scores. The prognosis of high-risk patients with Stage IA LUAD was almost identical to that of patients with Stage II LUAD, suggesting that treatment strategies for patients with Stage II LUAD may be beneficial in high-risk patients with Stage IA LUAD. pGGO-related DEGs were mainly enriched in immune-related pathways. Patients with high-risk scores and high tumor mutation burden had a worse prognosis and may benefit from immunotherapy. A nomogram was constructed to facilitate the clinical application of the 15-gene risk signature. Receiver operating characteristic curves and decision curve analysis validated the predictive ability of the nomogram in patients with Stage I LUAD in the TCGA-LUAD cohort and GEO datasets.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Aprendizado de Máquina , Microambiente Tumoral/genética
13.
Zygote ; 30(5): 611-618, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35369894

RESUMO

Embryo quality determines the success of in vitro fertilization and embryo transfer (IVF-ET) treatment. Biomarkers for the evaluation of embryo quality have some limitations. Apoptosis in cumulus cells (CCs) is important for ovarian function. PTEN (phosphatase and tensin homolog) is a well known tumour suppressor gene that functions as a mediator of apoptosis and is crucial for mammalian reproduction. In the present study, we analyzed the expression level of PTEN in human CCs and aimed to investigate its association with embryo developmental competence in IVF treatment cycles. The PTEN mRNA level in CCs was measured using real-time fluorescence quantitative PCR. The association of the differential expression of PTEN with embryo quality was analyzed. Our data showed that PTEN mRNA levels were significantly decreased in CCs surrounding mature oocytes compared with immature oocytes. Similar changes were found in the analysis of fertilization and blastocyst formation. The speculation that the measurement of PTEN mRNA levels in human CCs would provide a useful tool for selecting oocytes with greater chances to implant into the uterus needs to be further verified through single-embryo transfer in the future. The proapoptotic mechanism of PTEN in human reproduction needs to be further studied.


Assuntos
Células do Cúmulo , Oócitos , Animais , Biomarcadores/metabolismo , Células do Cúmulo/metabolismo , Desenvolvimento Embrionário , Feminino , Fertilização In Vitro , Humanos , Mamíferos , Oócitos/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tensinas/metabolismo
14.
Cancer Cell Int ; 22(1): 5, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986865

RESUMO

BACKGROUND: Alternative splicing (AS) plays important roles in transcriptome and proteome diversity. Its dysregulation has a close affiliation with oncogenic processes. This study aimed to evaluate AS-based biomarkers by machine learning algorithms for lung squamous cell carcinoma (LUSC) patients. METHOD: The Cancer Genome Atlas (TCGA) database and TCGA SpliceSeq database were utilized. After data composition balancing, Boruta feature selection and Spearman correlation analysis were used for differentially expressed AS events. Random forests and a nested fivefold cross-validation were applied for lymph node metastasis (LNM) classifier building. Random survival forest combined with Cox regression model was performed for a prognostic model, based on which a nomogram was developed. Functional enrichment analysis and Spearman correlation analysis were also conducted to explore underlying mechanisms. The expression of some switch-involved AS events along with parent genes was verified by qRT-PCR with 20 pairs of normal and LUSC tissues. RESULTS: We found 16 pairs of splicing events from same parent genes which were strongly related to the splicing switch (intrapair correlation coefficient = - 1). Next, we built a reliable LNM classifier based on 13 AS events as well as a nice prognostic model, in which switched AS events behaved prominently. The qRT-PCR presented consistent results with previous bioinformatics analysis, and some AS events like ITIH5-10715-AT and QKI-78404-AT showed remarkable detection efficiency for LUSC. CONCLUSION: AS events, especially switched ones from the same parent genes, could provide new insights into the molecular diagnosis and therapeutic drug design of LUSC.

16.
Front Pediatr ; 9: 771922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869124

RESUMO

Carnitine palmitoyltransferase 1A (CPT1A) deficiency is an inherited disorder of mitochondrial fatty acid ß-oxidation that impairs fasting ketogenesis and gluconeogenesis in the liver. Few studies implementing newborn screening (NBS) for CPT1A deficiency in the Chinese population have been reported. This study aimed to determine the biochemical, clinical, and genetic characteristics of patients with CPT1A deficiency in China. A total of 204,777 newborns were screened using tandem mass spectrometry at Quanzhou Maternity and Children's Hospital between January 2017 and December 2018. Newborns with elevated C0 levels were recruited, and suspected patients were subjected to further genetic analysis. Additionally, all Chinese patients genetically diagnosed with CPT1A deficiency were reviewed and included in the study. Among the 204,777 screened newborns, two patients were diagnosed with CPT1A deficiency; thus, the estimated incidence in the selected population was 1:102,388. In addition to the two patients newly diagnosed with CPT1A deficiency, we included in our cohort 10 Chinese patients who were previously diagnosed. Five of these 12 patients were diagnosed via NBS. All patients exhibited elevated C0 and/or C0/(C16+C18) ratios. No clinical symptoms were observed in the five patients diagnosed via NBS, while all seven patients presented with clinical symptoms, including fever, cough, vomiting, diarrhea, and seizures. Eighteen distinct CPT1A variants were identified, 15 of which have been previously reported. The three novel variants were c.272T>C (p.L91P), c.734G>A (p.R245Q), and c.1336G>A (p.G446S). in silico analysis suggested that all three novel variants were potentially pathogenic. The most common variant was c.2201T>C (p.F734S), with an allelic frequency of 16.67% (4/24). Our findings demonstrated that NBS for CPT1A deficiency is beneficial. The three novel variants expand the mutational spectrum of CPT1A in the Chinese population, and c.2201T>C (p.F734S) may be a potential hotspot CPT1A mutation.

17.
Front Genet ; 12: 720013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777461

RESUMO

Background: Emerging scientific evidence has shown that long non-coding RNAs (lncRNAs) exert critical roles in genomic instability (GI), which is considered a hallmark of cancer. To date, the prognostic value of GI-associated lncRNAs (GI-lncRNAs) remains largely unexplored in lung adenocarcinoma (LUAC). The aims of this study were to identify GI-lncRNAs associated with the survival of LUAC patients, and to develop a novel GI-lncRNA-based prognostic model (GI-lncRNA model) for LUAC. Methods: Clinicopathological data of LUAC patients, and their expression profiles of lncRNAs and somatic mutations were obtained from The Cancer Genome Atlas database. Pearson correlation analysis was conducted to identify the co-expressed mRNAs of GI-lncRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted to determine the main biological function and molecular pathways of the differentially expressed GI-lncRNAs. Univariate and multivariate Cox proportional hazard regression analyses were performed to identify GI-lncRNAs significantly related to overall survival (OS) for construction of the GI-lncRNA model. Kaplan-Meier survival analysis and receiver operating characteristic curve analysis were performed to evaluate the predictive accuracy. The performance of the newly developed GI-lncRNA model was compared with the recently published lncRNA-based prognostic index models. Results: A total of 19 GI-lncRNAs were found to be significantly associated with OS, of which 9 were identified by multivariate analysis to construct the GI-lncRNA model. Notably, the GI-lncRNA model showed a prognostic value independent of key clinical characteristics. Further performance evaluation indicated that the area under the curve (AUC) of the GI-lncRNA model was 0.771, which was greater than that of the TP53 mutation status and three existing lncRNA-based models in predicting the prognosis of patients with LUAC. In addition, the GI-lncRNA model was highly correlated with programed death ligand 1 (PD-L1) expression and tumor mutational burden in immunotherapy for LUAC. Conclusion: The GI-lncRNA model was established and its performance was found to be superior to existing lncRNA-based models. As such, the GI-lncRNA model holds promise as a more accurate prognostic tool for the prediction of prognosis and response to immunotherapy in patients with LUAC.

18.
Front Oncol ; 11: 705888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568032

RESUMO

BACKGROUND: Lung ground-glass opacities (GGOs) are an early manifestation of lung adenocarcinoma. It is of great value to study the changes in the immune microenvironment of GGO to elucidate the occurrence and evolution of early lung adenocarcinoma. Although the changes of IL-6 and NK cells in lung adenocarcinoma have caught global attention, we have little appreciation for how IL-6 and NK cells in the lung GGO affect the progression of early lung adenocarcinoma. METHODS: We analyzed the RNA sequencing data of surgical specimens from 21 patients with GGO-featured primary lung adenocarcinoma and verified the changes in the expression of IL-6 and other important immune molecules in the TCGA and GEO databases. Next, we used flow cytometry to detect the protein expression levels of important Th1/Th2 cytokines in GGO and normal lung tissues and the changes in the composition ratio of tumor infiltrating lymphocytes (TILs). Then, we analyzed the effect of IL-6 on NK cells through organoid culture and immunofluorescence. Finally, we explored the changes of related molecules and pathway might be involved. RESULTS: IL-6 may play an important role in the tumor microenvironment of early lung adenocarcinoma. Further research confirmed that the decrease of IL-6 in GGO tissue is consistent with the changes in NK cells, and there seems to be a correlation between these two phenomena. CONCLUSION: The IL-6 expression status and NK cell levels of early lung adenocarcinoma as GGO are significantly reduced, and the stimulation of IL-6 can up-regulate or activate NK cells in GGO, providing new insights into the diagnosis and pathogenesis of early lung cancer.

19.
Orphanet J Rare Dis ; 16(1): 339, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344405

RESUMO

BACKGROUND: Glutaric acidemia type 1 (GA1) is a treatable disorder affecting cerebral organic acid metabolism caused by a defective glutaryl-CoA dehydrogenase (GCDH) gene. GA1 diagnosis reports following newborn screening (NBS) are scarce in the Chinese population. This study aimed to assess the acylcarnitine profiles and genetic characteristics of patients with GA1 identified through NBS. RESULTS: From January 2014 to September 2020, 517,484 newborns were screened by tandem mass spectrometry, 102 newborns with elevated glutarylcarnitine (C5DC) levels were called back. Thirteen patients were diagnosed with GA1, including 11 neonatal GA1 and two maternal GA1 patients. The incidence of GA1 in the Quanzhou region was estimated at 1 in 47,044 newborns. The initial NBS results showed that all but one of the patients had moderate to markedly increased C5DC levels. Notably, one neonatal patient with low free carnitine (C0) level suggest primary carnitine deficiency (PCD) but was ultimately diagnosed as GA1. Nine neonatal GA1 patients underwent urinary organic acid analyses: eight had elevated GA and 3HGA levels, and one was reported to be within the normal range. Ten distinct GCDH variants were identified. Eight were previously reported, and two were newly identified. In silico prediction tools and protein modeling analyses suggested that the newly identified variants were potentially pathogenic. The most common variant was c.1244-2 A>C, which had an allelic frequency of 54.55% (12/22), followed by c.1261G>A (p.Ala421Thr) at 9.09% (2/22). CONCLUSIONS: Neonatal GA1 patients with increased C5DC levels can be identified through NBS. Maternal GA1 patients can also be detected using NBS due to the low C0 levels in their infants. Few neonatal GA1 patients may have atypical acylcarnitine profiles that are easy to miss during NBS; therefore, multigene panel testing should be performed in newborns with low C0 levels. This study indicates that the GCDH variant spectra were heterogeneous in this southern Chinese cohort.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , China , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Humanos , Lactente , Recém-Nascido , Triagem Neonatal
20.
PeerJ ; 9: e11687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277151

RESUMO

BACKGROUND: Ferroptosis is a novel form of programmed cell death characterized by the excessive accumulation of intracellular iron and an increase in reactive oxygen species. Emerging studies have shown that ferroptosis plays a vital role in the progression of lung adenocarcinoma, but the effect of ferroptosis-related genes on prognosis has been poorly studied. The purpose of this study was to explore the prognostic value of ferroptosis-related genes. METHODS: Lung adenocarcinoma samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was used to establish a predictive signature for risk stratification. Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curve analysis were conducted to evaluate the signature. We further explored the potential correlation between the risk score model and tumor immune status. RESULTS: A 15-gene ferroptosis signature was constructed to classify patients into different risk groups. The overall survival (OS) of patients in the high-risk group was significantly shorter than that of patients in the low-risk group. The signature could predict OS independent of other risk factors. Single-sample gene set enrichment analysis (ssGSEA) identified the difference in immune status between the two groups. Patients in the high-risk group had stronger immune suppression, especially in the antigen presentation process. CONCLUSIONS: The 15-gene ferroptosis signature identified in this study could be a potential biomarker for prognosis prediction in lung adenocarcinoma. Targeting ferroptosis might be a promising therapeutic alternative for lung adenocarcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...